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ABSTRACT

This paper is concerned with the propagation of phase boundaries
in elastic bars. It is known that the Riemann problem for an elastic
bar capable of undergoing isothermal phase transitions need not
have a unique solution, even in the presence of the requirement
that the entropy of any particle cannot decrease upon crossing a
phase boundary. For a special class of elastic materials, we have
shown elsewhere that, if all phase boundaries move subsonically
with respect to both phases, this lack of uniqueness can be resolved
by imposing a nucleation criterion and a kinetic relation for the
relevant phase transition. Here we investigate an alternative
approach that singles out acceptable solutions on the basis of a
theory that adds effects due to viscosity and second strain gradient
to the elastic part of the stress. We show that, for phase boundaries
that propagate subsonically, this approach is equivalent to the
imposition of a particular kinetic relation at the interface between
the phases.

X. iUroductol. II a recent paper [', we considered longitudinal mtions of an eastic

bar according to a one-dimensional continuum model that permits the material of the bar to

undergo phase transitions. Although inertial effects were taken into account in [1], motions

were assumed to take place isothermally. When a motion of the bar involves a propagating strain
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discontinuity, the second law of thermodynamics imposes an entropy admissibility requirement:

at each strain jump, the product of the velocity of the discontinuity and an associated driving

traction must be non-negative.

If the material of the bar is such that stress is a montonically increasing, strictly convex or

strictly concave function of strain, then phase transformations cannot occur, and all propagating

strain discontinuities are shock waves. For a bar made of such a material, the Cauchy problem

for the associated field equations and jump conditions has at most one solution that fulfills the

entropy admissibility requirement.

On the other hand, for the class of materials cons-dercc. .: 01], the stress-strain relation is

such that stress at first increases with increasing strain, then decreases and finally increases

again. A constitutive law of this kind affords a continuum model for phase transitions in the

present setting. A propagating strain discontinuity may now be either a shock wave or a phase

boundary, according to whether the particles separated by the discontinuity are of the same phase

or of distinct phases. In this setting, the Cauchy problem need no longer have a unique solution,

even with the entropy admissibility requirement in force. For the Riemann problem, it was

shown in [1] that this lack of uniqueness may be viewed as arising from the need to specify two

additional pieces of constitutive information pertaining to phase boundaries: a nucleation

criterion for the initiation of a phase transition and a kinetic relation that controls the rate at

which the phase transition proceeds. The importance of nucleation and kinetics has long been

recognized in the materials science literature concerning phase transformations [2].

A similar need had been identified in an earlier study of quasi-static processes involving

phase transformations in elastic bars [3]. The model for such processes given in [3] incorporates

a nucleation criterion and a kinetic relation. It leads to a determinate quasi-static theory and

yields results that are in qualitative agreement with experimental observations for bars made of
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"shape-memory" materials [4]. The form of the kinetic relation employed in [3] is one in which

the driving traction is a materially-determined function of the velocity of the moving phase

boundary; the nucleation criterion involves the specification of a critical level of driving traction

that signals the onset of a phase transformation.

For a special material whose rising-falling-rising stress-strain curve is piecewise linear,

we showed in [1] that, for the Riemann problem, the extent of lack of uniqueness of solution

remaining after imposition of the entropy admissibility requirement was precisely that needed to

accommodate the nucleation criterion and the kinetic relation at phase boundaries, at least for

kinetic relations of the kind introduced in [3] and in circumstances where the phase boundary

propagates subsonically with respect to both phases. Kinetic relations may not be prescribed at

shock waves. Phase boundaries that move supersonically with respect to the material phase with

lower sound speed were also discussed in [1]; it was found that no kinetic relation may be

prescribed at such a phase boundary in the Riemann problem.

A different approach to the issue of identifying meaningful solutions to a quasilinear

system of dynamical field equations and jump conditions in the presence of propagating phase

boundaries has been put forward by Slemrod [5,6,7] and explored by Shearer [8,9,10]; related

ideas have been pursued by Truskinovsky [11,12] and others. Although these authors are often

concerned with the van der Waals fluid, they note that their method can be applied to elastic bars

as well. In this approach, one first augments the conventional constitutive law for an elastic

material capable of undergoing isothermal phase transitions in such a way that the stress a

depends not only on the strain y, but also on the strain rate t and the second spatial strain

gradient yxx" The dependence of a on y is nonlinevr, but Yt and 'xx enter linearly and are

associated with a viscosity v and a strain-gradient coefficient X, respectively. Next, one

establishes a criterion to identify those moving phase boundaries within the elastic theory that

are preferred on the basis of this augmentation: the criterion asserts that such a phase boundary is
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preferred if and only if the strains j/and y on either side of the discontinuity can be smoothly

connected by a traveling wave constructed within the augmented theory.

The present paper is concerned with the relationship between the approach based on such

an augmented model and the direct approach described in [ 1].

In the next section, we formulate the elastic theory and its augmentation as described

above. In Section 3, we review the local properties of strain discontinuities according to the

elastic theory; as in [1], we impose a kinetic relation at phase boundaries. We consider the

augmented theory in Sections 4-6, where we study traveling waves in the manner of Slemrod

[5,6,7], but for the case in which the strain dependence of stress is trilinear. We show in Section

5 that strains y' and 7 can be connected by a subsonic traveling wave in the augmented theory if

and only if they are related by a certain restriction. In contrast, no such restriction applies to

strains that are connectable by a supersonic traveling wave; see Section 6. In Section 7, we

delineate the class of phase boundaries within the elastic theory that are preferred by the criterion

described above. In the subsonic case, we find that the preferred phase boundaries are those that

conform to a particular kinetic relation that arises directly from the restriction mentioned above.

This kinetic relation is of precisely the kind introduced in the quasi-stat setting in [3] and

studied in the dynamic context in [1]. For supersonic phase boundaries, no kinetic relation

emerges from the augmented theory. The distinction between subsonic and supersonic phase

boundaries observed here is entirely consistent with the findings reported in [1] and described

briefly above.

2. Basic equations. Suppose a bar of unit cross-sectional area occupies the interval

(_oo, ,,) of the x-axis in a reference configuration. During a motion, the particle at x in the

reference configuration is carried to x + u(x,t) at time t, where u(x,t) is the diplacement. We

assume that u is at least continuous with piecewise continuous first and second derivatives
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throughout the regions of space-time to be considered; more stringent requirements will often be

needed. The strain y(x,t) and particle velocity v(x,t) are defined by

' " x I v = ut , (2.1)

wherever the derivatives exist. Balance of momentum and compatibility of yv require that

x = Pvt  (2.2)

v =Y (2.3)

at points where y, v, and y are smooth; here, a(x,t) is the stress at (x,t), and p is the (constant)

mass density in the reference configuration. If either y or v is discontinuous across a curve

x = s(t) in thte -plane, balance of momentum and the smoothness properties of u yield the

following jump conditions:

[[Ra]] = -ps [[v]] (2.4)

[[v]] = -i [[y], (2.5)

where i(t) is the velocity of the moving strain discontinuity, and for any g(x,t) we have written

[[g]] --g(s(t)+,t) - g(s(t)-,t).

For the elastic bar, we take

here (y) is the stress response function whose graph is shown in Figure 1. The strain y is
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restricted to the range (-1, +oo) in order to assure that the mapping x - x + u(x,t) is invertible for

each t. We say that a particle of the bar labeled by x is in phase 1, 2 or 3 at time t according to

whether the strain y(x,t) is in (-1, ,M], (,yM' 7) or [7m, -0), respectively. The constants and

< g, are the elastic moduli, and c1 = (gl/p) 1/ 2 and c3 = (. 3/p) 1/ 2 < c1 are the corresponding

sound wave speeds, in phases 1 and 3. The special stress Y shown in Figure 1 is such that the

two shaded areas are equal; it is called the Maxwell stress. For the trilinear material,

1/2 M iao = (aMm) ,/2 where aM and % are the respective stresses at the local maximum and

A
minimum. On the declining branch of the stress-strain curve, 0(y) = - g27' + a2. We set

2=i 2/ )1/2; of

note that c2 is not a wave speed. Continuity of r(y) at the maximum and the

minimum reqnires that

221 (C 2)7tM  (2+ cc = 2+ 2 )m (2.7)
(72/P 1 2 c3  c2 ,

In the augmented theory, the constitutive statement (2.6) is replaced by

A
a =(Y) + PVYt- PXy7, (2.8)

where (C) is again the trilinear function of Figure 1, and v > 0 and X 2 0 are the viscosity and

the strain-gradient coefficient, respectively. The dimensionless parameter co defned by

o = 2X1/ 2/v (2.9)

will be useful in vhnt "!!Aow.

When considering the material governed by (2.8), we shall str ngthen the smoothness

requirements: i. will be twice continuously differentiable with piecewise continuous third and

-6-



fourth derivatives in all parts of space-time to be considered. Of the jump conditions (2.4), (2.5),

the latter is then trivially satisfied, and the former reduces to the requirement that Y be

continuous; by (2.8), this requires that y'x and therefore uxxx, be continuous.

The augmented theory used here is analogous to a special case of a theory proposed by

Korteweg [13] to account for the effect of capillarity in a viscous fluid; see [5]. In the latter

theory, one identifies y in (2.8) with specific volume, -Y with pressure, p with density, v with

viscosity and X with capillarity. Thermo-mechanical difficulties raised by Korteweg's theory

have been discussed in [14].

3. Local theory of phase boundaries in elastic bars. We now consider the elastic case

(2.1) -(2.6), together with the appropriate smoothness assumptions. Although many of the

detailed results to follow apply only for the trilinear material, the more general discussion in the

first part of the present section, as well as certain subsequent results, are valid for any

rising-falling-rising stress-strain curve.

Suppose that, during a motion, the portion of the bar occupying the interval [x1 , x2] in the

reference configuratinn bears fields y, v and a that are smooth except for a single moving strain

jump at x = s(t). Let

W(,Y) =f ( , ' ) dyv' , y,> -1, (3.1)

0

be the stored energy per unit volume of the bar, and consider the total mechanical energy
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px2

E~) ~ W(Y + JPv ldx (3.2)E J L=f 2r
x1

associated with the piece of the bar under consideration at time t. A direct calculation using

(3.1), (2.2) - (2.5) shows that

G(x2,t)v(x 2,t) - (x1,t)v(x 1,t) - E(t) = f(t)s(t), (3.3)

where the driving traction f acting on the strain discontinuity is defined by

A A(
f=f ( f/, )- ((y)dy- 2( + (3.4)

+ + + +

Here Y = 7(t) --y(s(t)±,t) and Y = a(t) = a(s(t)+,t) are the strains and stresses, respectively, on the

positive and negative sides of the strain discontinuity. The left side of (3.3) represents the excess

of the rate of work of the external forces over the rate of increase of mechanical energy.

Although this excess vanishes for smooth strain fields (f=O) or for stationary discontinuities

(s=O), this is not the case in general. If the material is viewed as thermoelastic, and if we make

the assumption - however unrealistic - that the motions considered take place isothermally, then

as shown in [15], the Clausius-Duhem inequality requires that the instantaneous rate of

mechanical dissipation f(t)s(t) be non-negative:

f(t)s(t) > 0 (3.5)

for all time. The entropy admissibility condition (3.5) must hold at all strain discontinuities;
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under isothermal conditions, it is equivalent to the assertion that the entropy of a particle cannot

decrease as the particle crosses a discontinuity in strain.

At the moving discontinuity x=s(t), the jump conditions (2.4), (2.5) imply

A + A

= -+ , (3.6)

A P+ - + 2
A+v A

A . "1-

Tne right side of (3.6) is thus necessarily non-negative for any pair of strains ', y that can occur

at a strain jump.

Conversely, if y', - are numbers in (- 1, oo) such that the right side of (3.6) is non-negative,

then it is possible to find numbers v,, v and s such that the jump conditions (2.4), (2.5) are

satisfied.

Because we are concerned here with phase boundaries rather than shock waves, we

assume that ;1 and y belong to different phases. Since we shall not consider here cases in which

either , or y is in phase 2, i.e., the "unstable phase", we may as well take j, to be in phase 1, and y

in phase 3. When specialized to this case and to the trilinear material of Figure 1, (3.6) becomes

2+ 2-s 2 = c.l -c1 (3.8)

-
J- 4-

In the y, '-plane, the set ot pairs ^1, 1 for which is in phase 1, , is in phase 3 and the

right side of (3.8) is non-negative is represented by the shaded region F shown in Figure 2. At

any point on the boundary segment BC, the numerator in (3.8) vanishes, so that s = 0. The
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conresponding phase boundary is thus instantaneously stationary. In the special case of

time-independent fields, points (y, y) on BC correspond to equilibrium phase mi :tures. If (0

denotes the equal-area stress in Figure 1, the special equilbrium mixture for which j, = 0t1 1

= Cr/Jt 3 is called the Maxwell state; it corresponds to point M in Figure 2. The Maxwel! state

represents stable equilibrium; other phase- 1, phase-3 equilibria are merely metastable.

The driving traction f acting on a phase- 1, phase-3 interface can be found from (3.4) and
A

the explicit form of cy(y) for the trilinear material: one finds that

A- + I (3.9)f = f(Y", ' = 2(9-1 - -3)('YM'Y -'Y/Y). 39

It follows that the driving traction vanishes on the hyperbola , y = yr. In view of (3.3), this

means that points in r that lie on this hyperbola correspond to values of j, and y for which the

associated phase boundary x = s(t) propagates without dissipation. Note that the Maxwell point

M lies on the hyperbola. At points off the hyperbola, f 0, so that the entropy admissibility

requirement (3.5) determines the sign of s; see Figure 2. For points on the hyperbola f = 0, the

sign of s is not determined by (3.5), and propagation in either direction is possible.

With the help of (3.8) and (3.5), one can show (as in [1]) that s necessarily lies in the

range

-c3 < s < c, (3.10)

where
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c*(c 1.,mC3 , 1/2
c c,< c (3.11)

The propagation speed s is said to be subsonic if Irs < c3 . From (3.8), it follows that this occurs

only for those points in the region r of Figure 2 for which , > 0. For supersonic motion of the

phase boundary, j must be negative, so that part of the bar is in compression. Furthermore, the

driving traction is positive, so that the entropy adaissibility requirement forces the direction of

propagation of the phase boundary to be such that the portion of the bar in phase 1 grows at the

expense of phase 3. Thus for a supersonically propagating phase boundary, the "parent" phase -

the phase into which the interface moves - is always phase 3.

We now use (3.8) and (3.9) to map the region r of the ,, I-plane into the s,f-plane. Each

point ( ', y) that does not lie on BC (Figure 2) is carried to two points (s, f) and (-i, f) in the

s, f-plane; if f 6 0, only one of these satisfies the entropy admissibility requirement (3.5). If f= 0,

the point (y, y) lies on the hyperbola; such a point maps to a pair of admissible points (±s, 0) in

the s, f-plane, with 0 s < c3 . Each point on BC maps to a single admissible point (0, f) on the

f-axis. All points in r that lie on j'=0 map to the same pair of points (±c3, f0), where the constant

f0 is given by f0=(.tl - .93) 7myM/2 > 0. Figure 3 shows the admissible image of F in the

, f-plane.

The physical basis for the elucidation of phase transitions in solids involves both a

nucleation criterion governing the initiation of the transition and a kinetic relation controlling the

rate at which it proceeds; see [2, 16, 17]. We have discussed simple continuum-mechanical

implementations of these notions in [1, 3, 15]. In particular, it is shown in [1] that, as long as all

phase boundaries propagate subsonically, a nucleation criterion and a kinetic relation can be

imposed in the Riemann problem, and that they single out unique admissible solutions in that

context. In the present discussion, we are concerned only with the propagation of an existing
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phase boundary and not w,' its emergence; the nucleation criterion is therefore not relevant

here. As for the kinetic relation, we proceed as in [1] and assume that, if the phase boundary

velocity s is subsonic, there is a function (p determined by the material that relates the driving

traction f to s, the latter being a measure of the rate at which the phase transition takes place.

Thus we take

f = (p6) , -c3 < s < c 3 . (3.12)

Because of the entropy admissibility requirement (3.5), y) must satisfy

(p(s)s> 0, -c3 <s<c3 . (3.13)

Note that if (p(s) is continuous at s = 0 as we shall assume here, (3.13) requires that (p(O) = 0. It is

required that the curve represented by (3.12) lie in the hatched region of the s,f-plane shown in

Figure 3. The pre-image of this curve in the j', 4-plane under the mapping (3.8), (3.9), (3.5) thus

comprises the locus of all strain-pairs j', y at a phase- 1, phase-3 interface that are consistent with

the kinetic relation (3.12).

The choice (p(s) a 0 for the kinetic response function corresponds to dissipation-free

motions of the bar. For nearly dissipation-free motions, the choice

p(s)=Ks , -c3 < s < c3 , (3.14)

with ir a sufi enItly small non-negative V1I.jLaULt,lb s.Lu... rumLIL 1%L;1L10.: . L... L11UL k-). I- )

can of course be considered. The choice
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(p(s) = Ksin" (s/k), (3.15)

where K and k are constants, can be motivated by arguments of the kind used in thermal

activation theory; for a sketch of the latter theory, see Chapter 1 of [16]. Other special choices of

(pi) are discussed in [1,3]. Kinetic relations not of the form (3.12) may be of interest. One that is

suggested by a dislocation-based theory put forward in [17] for the modeling of fast martensitic

phase transitions is

f=f.+ms1"+Cs , (3.16)

with f , m and K constants.

The kinetic relations discussed above represent local requirements, as indeed they must if

they are to be regarded as part of the constitutive description of the material. Moreover, the

notion of a scalar driving traction, and consequently that of a kinetic relation, can be carried over

to more general constitutive settings in three dimensions with thermal effects accounted for as

well; for further discussion, see [15].

It was shown in [1] that the Riemann problem based on the theory of elastic bars

described above is not overdetermined when the kinetic relation (3.12) is imposed at

subsonically propagating phase boundaries.

4. The augmented theory: construction of solutions. In order to pursue the approach

based on the augmented theory, we replace the constitutive law (2.6) by (2.8), and we replace
+ 4-

the moving discontinuity with strains y and particle velocities v in the elastic bar by a traveling

wave in the augmented theory. In the traveling wave,
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y=( ), v=v(4), 4=x-st, (4.1)

where s is a constant, and

y'(o)=j , v(-oo)= , 3(+oo)= y, v(+Vo)=v, (4.2)

corresponding to a smooth connection of the states j,, ', and , . As before, j, is to be in phase 1,

y in phase 3. In conformity with the smoothness assumptions made in Section 2, we suppose

that y( ) and v(4) are continuous and continuously differentiable on (-oo, o), and that they have

piecewise continuous second and third derivatives there. In view of (2.4) and (2.8), y "(4) must

in fact be continuous for all 4, provided XO.

From (2.2), (2.3) and (2.8), traveling waves of the form (4.1) must satisfy

P%' a+ pvs"-'()y'-PSv'=0, (4.3)

v '+ s y' = 0, (4.4)

at all points where y "'(4) exists. We seek solutions y, v of (4.3), (4.4) that satisfy the conditions

(4.2) at ±oo.

Before constructing an explicit solution to this boundary value problem, we record some

useful observations. Assuming the existence of a solution, we first integrate (4.3), (4.4) to obtain

S+ vsY 3- (') -s v =A, (4.5)

v + y= B, (4.6)

where A and B are constants. From the boundary conditions (4.2), it follows that A and B satisfy
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1A+ + 1A +*
=--. ()- sv=--a(y)-s, B =v+sY=,+s~'. (4.7)
P P

But (4.7) immediately imply (3.6) and (3.7), which are therefore necessary conditions on s and

the given data for the existence of a solution to the problem (4.2)-(4.4).

Elimination of v between (4.3) and (4.4) yields a differential equation for y:

I A
Y +Vs*'--_(Y)+s2 =C on (oo, oo), (4.8)

where the constant C is given by

C=A+sB=-- +s Y=-- +s y, (4.9)
p p

+ A +
and we have written a a (yy). The boundary conditions associated with (4.8) are

Y(-o)=j, y(+))=y, (4.10)

with Yin phase 1, y in phase 3. We speak of (4.8)-(4.10) as the traveling wave problem. Once

y(4) has been found, v(4) is determined from (4.6).

After multiplying the differential equation (4.8) by y '( ) and integrating with respect to

from - - to + -, one finds with the help of (3.6), (4.9) that a solution 7(4), if it exists, must

satisfy
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A S fv' d (4.11)f(y, y) = pvs; [b' ( )]2 d , (.1

-00

A
where f is the function defined in (3.4). From (4.11) and the fact that v > 0, it follows that, if the

traveling wave problem has a solution, then and the data y, y necessarily satisfy

f S-> 0; (4.12)

cf. the entropy admissibility condition (3.5) of the elastic theory. Of the two necessary conditions

(3.6) and (4.12), the first determines the speed of propagation sIl of the traveling wave. The sign

of s, and hence the direction of propagation, is then determined by (4.12) with the help of (3.4),
+ A

provided the given strains y are such that f(y,) 0. As in the derivation of (3.10), from (3.6)

and (4.12) one finds that s lies in the interval (-c3 , c,).

We seek a solution of the traveling wave problem (4.8)-(4.10) for which y( ) is in phase

1 for -- < 4 0, in phase 2 for 0 < 4 < b, and in phase 3 for b < 4 < - , for some suitable b to be

determined. In view of our smoothness assumptions, the following conditions must hold at the

interfaces between the various phases:

T(0-) = M, 7(0+) = 7 M' 7'(0-) = y'(0+), (4.13)

y(b-) =ym' y(b+) =ym' y'(b-) =y'(b+). (4.14)

If (4.13), (4.14) and the differential equation (4.8) all hold, then Y"(4) is automatically
continuous at -0 and P=b, provided .X:.0.

In order to construct such a solution, we first consider three subsidiary problems for the

restrictions of y to the separate intervals (--, 0], [0, b] and [b, -,). The first of these is a
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boundary-value problem, while the second and third are initial-value problems; the problems are

to be solved in order.

Problem 1:

Xy"+vsy' -(c2-s 2 )y=C on (--,0], (4.15)

y(-,) = T, y(O-) = Y, ; (4.16)

Problem 2:

ky" + viy' + (c2 +S 2 )y=C+a 2/p on [0,b], (4.17)

7(0+) =  yM ' , '(0+) =y'(O-) ; (4.18)

Problem 3:

"+ V' y' - (c 3 - s) y= C on [b,oo), (4.19)

y(b+) = ym' y'(b+) = y '(b-). (4.20)

The function y on (_0o oo) determined by solving these problems will satisfy the differential

equation (4.8), the first of the boundary conditions (4.10), all of the interface conditions (4.13) at

t=O, and all but the first of the interface conditions (4.14) at 4=b. Thus after solving Problems

1-3, we shall still need to enforce the boundary condition

y,(+oo) =y, (4.21)

the interface condition

y(b-) = ym' (4.22)
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and the requirements

-I < y( ) <y "M for -- < <0; yM < y( ) < ym for 0 < t < b; y( ) _ ym for >b. (4.23)

The inequalities (4.23) insure that the strain belongs to the appropriate phase in each interval.

After using the right-most representation of C in (4.9), one finds that the solution of

Problem 1 is given by

p+(yM -/)e < <O, (4.24)

where the positive number p, is defined by

pl=_ V (sp)>0 , =p(i)=['2 +032(c 2 A]1/2 >0, (4.25)

and co is defined in (2.9).

We turn next to Problem 2. The general solution of (4.17) is

y( ) = 'y0 +Dle + , 0 < b, (4.26)

where D1 and D2 are arbitrary constants, and the constant yo is defined by
1 2O

O = (C + cJ2/p)/(c2 +S- . (4.27)

In (4.26), the (possibly complex) constants ql and q2 in the exponentials are given by
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ql=-j,(s-Q)' q2=- )' ( 's + Q) ' (4.28)

where we have set

[2_- (02 ( 2  ' 2)1/2 if i2_ (02(c2 + j2) 0

Q=Q() i(c22 +SA (4.29)
i[02 (c2 + 2). _ 2]112 if *2 20 2 *2) < 0.

(2 s )- ] if O (c2  5)O

We now choose the constants D and D2 so that the initial conditions (4.18) for Problem 2 are

satisfied. This leads to

D1 vQ ( - (P2" q1) D 2=+- -( " T0 )2(P 2 - q2) ,  (4.30)

here P2 is given by

V ((4.31)
P2=T-SP<

and P is defined in (4.25). It has been assumed above that Q 0, so that qlI-q 2 ; while the case

Q=0 can be readily treated, we exclude it for simplicity. Note that although ql and q2 may be

either real or complex, y as given on [0, b] by (4.26)-(4.31) is always real.

Finally, we consider Problem 3. Its solution is given by

+ 'm- . r(-b) r2( -b) ] +L'(b-) - -b)_

+( =  r l - r2 t.- r2 e+ r e  I+r-r 2 er  ber 2 ( bb) , >b,(4.32)
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where r1 and r2 are defined by

V V
r =- X(s-R) r2=--(s+R) ,(4.33)

and ve have set

r + W2~2 (c 2 )]III if2+ )(22

R=R(s)= (4.34)
i [0)2 (k2._ C2)-$211/2 if j2 + 0)2 (C2_S 2 )5 <0.

In (4.32), y'(b-) is found from (4.26):

y'(b-) = Dlq 1 eq l b + D e q2b , (4.35)

with D1 and D2 given by (4.30). For simplicity, we have excluded the case R=O, corresponding

to rl = r2. Again, we note that, although r1 and r2 may be either real or complex, y( ) as given on

[b,,o) by (4.32)-(4.35), (4.28)-(4.30) is always real.

In order to complete the construction of a solution y( ) to the traveling wave problem

from the solutions of Problems 1, 2 and 3, it is necessary to address the remaining requirements

(4.2'i)-(4.23). By (4.26), we may write (4.22) as

D, e q b + D, eq b = '- ,,, (4.36)

where D and D2 are given by (4.30), ql and q2 by (4.28) ard y0 by (4.27). Equation (4.36) is a
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condition for the determination of the length b of the phase-2 interval; we postpone the

discussion of the solvability of (4.36).

Of the requirements (4.23), the first pertains to the interval (--, 0]; by (4.24), this

condition is automatically satisfied. We shall address those conditions in (4.23) that pertain to

(0,b) and [b,-) after b has been determined.

Finally, we note from (4.32) that, in order to discuss the boundary condition (4.21) at

4=+-,, we must know the sign of the real parts of r I and r2 . These signs depend critically on

whether the traveling wave is moving subsonically (1s1 < c3 ) or supersonically (s > c3). In

continuing the analysis, we treat these two cases separately.

5. The augmented theory: subsonic case. Suppose first that the given strains y at

22infinity are such that the propagation speed s delivered by (3.6) is subsonic: s2 < c3 . Then by

(4.33), (4.34), r1 and r2 are both real, and r1 > 0, r2 < 0. From (4.32), it then follows that 7(4)

satisfies the boun.dary condition y(+o) = ' if and only if the coefficient of exp[Ir1 (4-b)] in (4.32)

vanishes. Making use of (4.35), we may write this condition as

Djq 1 eq b +D 2q2e = r2(Ym - Y). (5.1)

Observe that both (4.36) and (5.1) must hold with I and D2 given by (4.30). Thus if one of

these, say (4.36), serves to determine b, the remaining one - (5.1) - provides afurther necessary
+

restriction on the g-i.n data y.

With (5.1) in force, only the exponentials involving r2 remain in (4.32), so that y( )

increases monotonically from 7at = b to y at = +0o thereby satisfying (4.23)3 and thus
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assuring that y() is indeed in phase 3 for all 4 _ b.

After some algebra that makes use of (2.7), (4.9), (4.25), and (4.27)-(4.33), one finds that

(4.36) and (5.1) are equivalent to the following pair of equations:

e Qv/X Q- P - R(5.2)

e

VsbA ((r-0) (5.3)

where Q, P, R andy 0 are given by (4.29), (4.25)2, (4.34), and (4.27), respectively. We regard

(5.2) as an equation for b, so that (5.3) becomes a restriction on the data.

To analyze (5.2), we must distinguish between real and complex Q. It follows from

(4.29) and the fact that IsI < c3 that Q is complex and different from zero if and only if

Isl < c** ,(5.4)

where

[032/(1-m2)]1i/2 5 c if 0 < C2 c/(c2 + c2)

c** = c**(CO) 2 2  /(c2 c) (5.5)c 3  if 02 _> c 3l ( 2  + 2

Figure 4 shows the regions in the j,, v-plane that correspond to real and to complex Q.

We now consider (5.2). Suppose first that Q is real, and therefore positive. In this case,

the left side of (5.2) increases with b from the value 1 at b=O to +- at b=+-,, but the right side of
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(5.2) is less than unity. It follows that (5.2) cannot hold for any b > 0 when Q is real. Thus any

point in either of the unshaded areas in Figure 4 corresponds to a pair of strains y, that cannot

be connected by a subsonic traveliig wave of the assumed form.

By (4.29), if Q is complex, it is pure imaginary, and both sides of (5.2) represent

complex numbers on the unit circle. It follows that (5.2) has infinitely many roots. Let Op and

R stand for the respective arguments of the complex numbers P + Q = P + i1QI and R + Q =

R + iIQI. Since P, R and IQI are positive, 0p and 0R may both be taken in (0, 7r/2). The positive

roots of (5.2) are given by

b=b = -[2(n+l)ir - 2 (P +R)], n= 0,1,2,.... (5.6)

It can be shown that, of all the roots bn listed above, only b = b0 furnishes an interval (0,b) on

which y(4) as given by (4.26)-(4.31) is everywhere in phase 2; indeed, when b=b0 , y( ) increases

monotonically on [O,b]. Thus (5.2) determines exactly one acceptable value of b.

Having found b, we turn to (5.3). Since s and yo are determined by the given data y,

through (3.6), (4.12), (4.27) and (4.9), and since P, R and b are determined in terms of s and

material parameters, it follows that (5.3) represents a restriction on the data. In order to interpret

this restriction, we first note that (5.3) can be solved foryO in terms of s:

7 m 7 M"J'0 T M +(5 .7 )

1/2 R-s -vsb/2(51~~ ~ \ M+ (+ s)

From (2.7), (4.9) and (4.27), one can show that
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2 *2 2 •
C2 +S C2+S

Y=Ym -C =Y + - (^M -70)(5.8)
c 1 -s c 3 - s

Using (5.7) in (5.8) and eliminating c2 with the help of (2.7) ultimately yields

G(s) + G(s)
' = 2 2 ' -C 2 2 ' < (5.9)

c1 3 -

where G(s) is given by

H(%) 2 .2 2 .c 2)m, -,<s<c,G(s) 2 ) (c2 S )M , c<S<C (5.10)

S+H(s) 1 +H(s)

and

H () ym 12R ( s) - e-Vb/2X >0, -c**<s<c**. (5.11)
S'M! P(s) + s

In (5.11), R and P are given by (4.34)1 and (4.25)2, respectively, and b is understood to be b0;

see (5.6). Equation (5.9) represents a restriction on the given data. Since by (4.25)2, (4.29)2 and

(4.34)1$ P,Q and R depend on the constants X and v of the augmented theory only through the

parameter w3 given by (2.9), it follows from (5.6), (5.11) and (5.10) that vbIk, H and G have this

property as well.

In summary, we have shown that if there is a subsonic traveling wave of the assumed

form connecting a phase- 1 strain ' at = -o to a phase-3 strain at = +oo, and if neither Q nor
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R vanishes, then ^() must be given by (4.24), (4.26) and (4.32), b must be given by (5.6) with

n=0, and the given data ],, y must satisfy the restriction (5.9).

Conversely, if the data fulfill (5.9) and if b is given by (5.6) with n=0, then neither Q nor

R vanishes, and y( ) as given by (4.24), (4.26) and (4.32) is a subsonic solution of the assumed

form to the traveling wave problem (4.8)-(4. 10).

+

6. The augmented theory: supersonic case. Next, let the given strains y at infinity be

such that s is supersonic: c3 < s < c,. In contrast to the subsonic case, r1 and r2 may now be

either real or complex. However, according to (4.33) and (4.34), when r1 and r2 are real, both

are negative, and when they are complex, both have negative real parts. It then follows that, in

either case, the restriction of y(4) to [b, oo) as given by (4.32)-(4.34) satisfies the boundary

condition 'y(+-)=y without further restriction on the data y.

We now return to (4.36) in order to determine b in the supersonic case. Detailed analysis

of (4.36) shows that, when ql and q2 are both real, (4.36) has exactly one positive root b, and this

root is such that the strain y() associated with the restriction of y to (0, b) is indeed always in

phase 2, as required. One can also show that, when q, and q2 are complex, (4.36) has infinitely

many positive roots b, but only the smallest of these leads to strains %() that belong to phase 2

for 0 < < b. Thus whether q, and q2 are real or complex, (4.36) determines exactly one

acceptable value of b in the supersonic case. Finally, it can be shown that, for this value of b, the

strain y(4) associated with the restriction (4.32) of yto [b, oo) is in phase 3 for all > b in those

supersonic cases for which r1 and r2 in (4.33) are real. We have been unable to show that this

conclusion persists in supersonic motions with complex r's, but numerical calculations suggest

that it does. We shall take this for granted in what follows.
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In summary, if there is a supersonic traveling wave of the assumed form connecting a

phase-I strain , at { = -ao to a phase-3 strain y at { = +00, and if neither Q nor R vanishes, then a

unique value of b can be found, and y( ) must be given by (4.24), (4.26) and (4.32). Conversely,

given e (- 1, 0) and y > y M (see Figure 2) for which Q and R do not vanish, then for a suitable

value of b, T( ) as given by (4.24), (4.26) and (4.32) represesents a supersonic traveling wave
+

withoutfurther restriction on the data y.

Finally, we note that the special case of the augmented theory for which X=O, v > 0

corresponds to a simple viscoelastic model of the bar. Although we do not treat this case in detail

here, we remark that it leads to the conclusion that all traveling waves in the augmented theory

are supersonic. A related observation was made by Slemrod [5] in motivating the inclusion of

capillarity as well as viscosity when augmenting the theory of the van der Waals fluid. As noted

in [4], [17], slowly moving phase boundaries in solids have been observed in experiments; the

special case X=0 of the present augmented theory would therefore seem too special.

At the other extreme, the special case of the augmented theory in which v=O, X>O leads to

purely dissipation-free behavior, as suggested by (4.11).

7. Permissible phase boundaripo ;n the elastic bar. According to the criterion based

on the augmented theory described here, '-. 'sible phase boundaries within the elastic theory

are those for which the associated strains y and y can be connected by a traveling wave in the

augmented theory. For phase- 1, phase-3 interfaces, pairs of strains y, y permitted by the jump

conditions (2.4), (2.5) in the elastic theory correspond to points in the region F of Figure 2.

Among all points in F, those for which -1 < , < 0 correspond to supersonic phase boundaries,

and those with 0 <,-' < yM sre associated with subsonic phase boundaries.

-26-



As we have shown in the preceding section, every "supersonic pair" ', 7" (except possibly

those for which either R or Q vanishes) can be connected by a traveling wave in the augmented

theory. Thus all such supersonic pairs are "preferred" according to the present criterion.

In contrast, the results of Section 5 show that, among all points (j', y) in F that correspond

to subsonically propagating phase boundaries, only those that satisfy the restriction (5.9) are such

that j, can be connected to y by a traveling wave in the augmented theory. Interpreted

geometrically, condition (5.9) is the parametric representation of a curve in the subsonic portion

of F that corresponds to the locus of pairs y, y+ that are preferred in the elastic theory according to

the present criterion.

More significantly, the restriction (5.9) on preferred ,ubsonic phase boundary strains is

equivalent to a kinetic relation of precisely the form (3.12). By substituting for j, and y from

(5.9) into the representation (3.9) for the driving traction f at a phase-i, phase-3 interface, we

find indeed that

f = p(s), (7.1)

/
where

1 G(6 ) 1 (7.2)

p(s) = (R2 22 'J -c** <c**
c1 s )(c3 -

In (7.2), G(s) is given by (5.10), (5.11).

It is appropriate to note here that the solution 'y() of the traveling wave problem in the

augmented theory has a limit as the viscosity v tends to zero, the parameter co and the data Y, Y
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being held fixed. Because P, Q and R depend only on Co and the data, it follows from (5.6) that

the length b of the phase-2 interval tends to zero in this limit. It is also readily shown that y(4)

tends to -' for every 4<0 and to + for every 4>0 as v -) 0, co fixed. This zero-viscosity limit of

'y(4)satisfies all the differential equations and jump conditions of the elastic theory. Within that

theory, it represents a propagating phase boundary moving with a velocity s that satisfies (3.8)

and the entropy admissibility requirement (3.5). Moreover, because G in (5.10) depends on v and

X only through o, the kinetic relation (7.2) remains unaffected by the limit process.

Figure 5 describes the special kinetic response function (p of (7.2) by plotting f/f0 vs. s/c 3

according to (7.1), (7.2); here f0 = - YyMym/2" One finds that f/f0 depends only on the

three material parameters aM/am, M'// and co; the figure is plotted for fixed values of the first

two of these and for various values of (o. For small values of co (corresponding, for example, to

large viscosity), the graph strikes the top and bottom boundaries of the permissible region in the

, f- plane when s=c*.. This occurs when co < c3/(c2 + c3) 1 2 ; see (5.5). For the other values of

(o considered, f/f0 approaches -- as s/c3 tends to -1, but f/f0 tends to unity as the latter ratio

approaches +1. For large values of co, or small viscosity, the kinetic relation corresponds to

nearly dissipation-free motion of the phase boundary over most of the range of velocity s. Note

that, from the graphs, (p(s) increases monotonically with s for the values of the parameters

considered. The kinetic relations encompassed by the analysis in [1] were assumed to have this

monotonicity property. It can be shown that, as indicated in Figure 5 and as expected from (4.11)

and (4.12), (p(s) as given by (7.2) satisfies the requirement (3.13) imposed on every kinetic

response function by the entropy admissibility condition (3.5).

"'t,-. ; m . 1'7 1\ (7 .2 .. ,r,.., A 1 ,. - , M ..-
& 1, ,t ,t . 1).• , I ° \, /.k-.,.) , ., l.'..Ad , .1 I.. LJ.X ... ,LL • UUL~ ,,t-AL..'.. LA..A J J A.,"..J&L '.JA ,,.,U %%. 11.

correspond to a special case of those that have the form (3.12) and were considered in [1,3].

These in turn are by no means the most general kinetic relations conceivable. Moreover,
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au:niektation is not the only way to specify the kinetics of a phase transition within a continuum

mod4 l; thermal activation theory, for example, provides an entirely different approach that may

bc ,:h) sic lly appropriate under certain circumstances. Even within the general framework of

au, n -ntation, alternatives suggest themselves: one might supplement the Newtonian viscous

dai, .g vyt in (2.8) by adding a term proportional to t; the resulting detailed kinetics would

prestirably differ from those described by (7.1) and (7.2). Indeed, it is unlikely that any scheme

base "'on an augmented theory for modeling the kinetics of phase transitions in solids can lay

claim zc universality.
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